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Results of modeling grain growth by the Monte Carlo method on grids consisting of  Voronoi polyhedra for 

an isotropic distribution of the points on a plane and in space are reported. The influence of the grid structure 

on the properties of the model are discussed. 

Introduction. The structure of the grains in polycrystalline materials determines, to a considerable degree, 

their physical properties. Considering the practical importance of these materials, it is natural that a large number 

of experimental works are devoted to investigation of the processes of recrystallization, grain growth, and migration 

of intergrain boundaries [1, 2 ]. Prediction and control of the grain structure encounter difficulties due to the 

complicated interactions and nonequilibrium processes occurring in these materials in industrial treatment. For just 
this reason no complete theoretical generalization of experimental data is available. Mathematical modeling of the 

processes of recrystallization and growth of grains is one of the possible ways of predicting the structure and 

properties of polycrystalline materials. Use of the Ports model and the Monte Carlo method to model the evolution 

of the structure of grains makes it possible to obtain the main relations and the statistical distributions typical for 

experimental data. Owing to this and to the simplicity of the model this approach is currently widely used. 

2. Statement of the Problem. In modeling by the Monte Carlo method a material is represented as a regular 

hexagonal or tetragonal grid in the two-dimensional case and as a simple cubic grid in  the three-dimensional case. 

Each i-th (i = 0, ..., N) cell of the grid is assigned a definite "orientation" si, and connected regions of the grid 

consisting of cells with the same orientation form a grain. The number of possible orientations Q is limited (s = 1, 

.... Q). The Hamiltonian of the system is written as the sum of the interaction energies of neighboring cells of the 

grid, and the interaction energy differs from zero only for cells with different orientations: 

n = - J ~ij (~si's] - 1), (1) 

where J is a positive constant; j takes the values of the original numbers of the cells adjacent to the i-th cell. For 

this Hamiltonian all the excess energy is concentrated at the intergrain boundaries. Simulation of migration of grain 

boundaries using the Monte Carlo method [3 ] consists for this model in modeling the process of relaxation of the 

system to the equilibrium state at a certain temperature T and involves the following operations: step-by-step 
generation of a random change in the orientation associated with thermodynamic fluctuations for a randomly chosen 

grid cell; conservation of the change with a probability - exp ( - A E / T ) ,  where AE is the energy increment of the 

system associated with the change in the orientation. In the modeling, the time t is measured in Monte Carlo steps, 

and each such step is equal to N attempts to change the orientation in the system. 
The grids used in the modeling contain, as a rule, about 104-105 cells for two-dimensional models and 

106 cells for three-dimensional models. Periodic boundary conditions are imposed to the system. Despite the 

simplicity, the models presented demonstrate behavior similar to grain growth in polycrystalline materials [4, 5 ], 

and introduction of additional terms into the Hamiltonian and of "special" fixed orientations makes it possible to 

model recrystallization [6, 7 ] and to take into account the influence of a second phase [8 ]. 
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Fig. 1. Structure of grains at the initial moment  of time t -- 0 (a) and  t = 105 

/~sec (b) at T = O.5Tc. 

Although numerous  works are devoted to investigation of grain growth on regular  discrete grids, the 

influence of the grid structure has been paid little attention, and it mainly concerns the mechanisms of s tate  t ransfer  

responsible for migration of the boundary  as a whole. At the same time the influence of anisotropy and  possible 

irregularities in the grid have not been considered. The  importance of this problem is easy to unders tand  by 

comparing the results of modeling on hexagonal and tetragonal grids since in these cases the evolution of the 

microstructure of the material  is essentially different. 
Below, considerat ion is given to grain growth on isotropic grids that are Voronoi diagrams Vor(f2) for  nodes 

arranged in a random manner.  Construction of such a grid consists of the following steps: generat ion of a set of 

nodes P = {Pl, P2, ..., PN} randomly arranged inside some region f2 (P ie  ~2, Vi = 1, N); construction of the Voronoi 

diagram 

N 

Vor (f2) = U M i , (2) 
i = l  

where Mi(F, V, E) is the Voronoi polyhedron (VP) of the point Pi determined by the set of faces F, vertices V, 

and edges E: 

Mi = {x I x e •, d (x, Pi) -< a (x, p?  v j i t , (3) 

where d is the distance between the points. 

In the case of regular ar rangement  of the nodes of the set P according to a t r iangular  or square template,  

the corresponding Voronoi diagrams form regular hexagonal and tetragonal grids on a plane; similarly, a r rangement  

of nodes according to a cubic template leads to construction of a cubic grid in space. Thus ,  Voronoi diagrams are 

a natural  generalization of the investigated cases of regular grids for sets of arbitrari ly ai-ranged nodes.  In arranging 

nodes that  prescribe a grid in a random manner ,  the influence of anisotropy on grain growth is excluded,  and the 

diagrams obtained are nondegenerate .  Here the order  of the junctions does not exceed four in three-dimensional  

space and three  on a plane. Propert ies of these diagrams and algorithms for their  construction are  given in [9, 10 ]. 

Modeling of grain growth in the two-dimensional case was carried out on a grid consisting of N -- 60,000 

randomly ar ranged nodes. The  region f~ C R 2 was a unit square. For modeling of grain growth in the three-  

dimensional case, use was made of a grid consisting of N = 105 polyhedra,  and the region f2 C R 3 was a unit  cube. 

In all cases periodic boundary  conditions were imposed on the region. 

For  the case of irregular grids, instead of (1) we introduce a Hamiltonian of the form 

H = - J  ~ Sij(CSsi,s j -  1),  (4) 

where Sij is the area of the face of the i-th polyhedron in common with the ]-th polyhedron in the three-dimensional  

case. In the two-dimensional case Sij is the length of the corresponding edge. In (4) the energy of the system is 

proportional to the surface area of the intergrain boundaries,  and modeling by the Monte Carlo method  leads to 

minimization of the surface energy of the grains. 
Complication of the form of the Hamiltonian and the structure of the initial discrete grid increases consid- 

erably the computational expenditures  and the requirements on the size of the memory  in modeling. Difficulties 

are encountered,  foremost,  in construction of large grids, and therefore effective parallel algorithms [10, 11 ] for 
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Fig. 2. Mean grain area versus t ime at T -- 0 .7T c (a) and mean mobility of 

grain boundaries  versus temperature  (b). 

cons t ruc t ion  of two- and  th ree -d imens iona l  Voronoi and  Delone d iagrams were developed for  the parallel  

computation system PowerXplorer  of the Parsytec firm. To decrease computational expendi tures  in grain growth 

modeling, corresponding parallel algorithms and an algorithm for balancing the loading of the processors based on 

modeled anneal ing (a problem of discrete mathematics) were also developed [l I ]. 

The  number  of possible orientat ions Q was varied from 2 to N in the calculations. With increasing Q the 

volume of calculations increases proportionally. It was established numerical ly that the influence of coalescence of 

grains with the same orientat ion on the system properties becomes negligible for Q - 1 0 0 .  In all cases a random 

distribution of orientat ions over the grid cells was adopted as the initial distribution. To obtain reliable results for 

the self-similar regime of growth, statistical distributions and relations of the growth parameters  were de termined 

starting from the moment  when approximately 500 grains remained in the system, and the mean grain contained 

-- 10 2 ceils of the initial grid. As a whole, the results of modeling on the two-dimensional and three-dimensional  

models showed the same behavior of the systems at large times; however the accuracy of the results in the two- 

dimensional case was higher.  

2. Results of Modeling. In all the cases under  consideration the modeling showed absence of grain growth 

at T - - 0 .  However,  at T > 0 stable normal growth was observed at large times of -105/~sec  (Monte Carlo steps). 

Measurements were made in the temperature  range of (0 .3 -0 .8 )Tc .  In the modeling, the area and topological class 

of each grain were de termined every few steps of the Monte Carlo method.  A typical pat tern of the grain structure 

is shown in Fig. 1, where mainly triple junctions in the system are seen to approach equilibrium, as has been 

observed in experiments  [1, 12 ]. 

In the modeling, a l inear  law of growth of the mean grain area (R 2) - t was ob ta ined  for the entire 

temperature  range. Correspondingly,  for the mean grain radius the relation (R) - t  n, where n = 0.50 • 0.03, is 

obtained. The  dependence  of the mean grain area on the time for T = 0.7To is shown in Fig. 2a. Unlike the results 

of modeling on regular grids, in the cases under  consideration the actual area of the grains was calculated instead 

of the number  of cells of the initial grid in a grain, since the sizes of the cells are no.t equal. For  the initial stage 

of grain growth the exponent  gradually increases starting from n = 0.26. 

The  distribution of the grains over the areas and the topological classes turned out to be invariant  in time. 

As is seen in Fig. 3, the dis t r ibut ions correspond to normal  grain growth and  are  close to those  observed 

experimental ly for pure metals [121. 

The  mobility of the grain boundar ies /~ [1 ] obeys, as the modeling showed, an Arrhenius  law with a 

constant activation energy W in the investigated temperature  interval: 

~ )  = A exp ( -  W/T) .  (5) 

The  mean mobility versus the temperature  is shown in Fig. 2b. At the same time on small scales strong 

nonuniformity of the motion of some segments of boundaries caused by the inhomogenei ty  of the g r i d ,  namely,  

different sizes and an irregular  form of some cells of the initial grid, was observed. For this reason cells of large 

sizes h indered the motion of boundaries On some segments,  thus making it stepwise. Such motion of boundaries  

was also observed in some physical experiments [1 ]. 
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Fig. 3. Distribution of grains over areas (a) and topological clsasses (b). 

To study the influence of the structure of the initial discrete grid on the grain-growth parameters, we 
investigated the behavior of the model in the case of step-by-step recovery of the symmetry from the Voronoi 

diagram for an isotropic distribution of the nodes up to a regular hexagonal grid in the two-dimensional case. At 

each step of the recovery of the ordering each point of the set P moved due to the effective repulsive force acting 

from the side of the nearest neighbors. As a result, the symmetry appeared in the grid after a certain time. 

Investigation of the model parameters at each step showed that in this recovery the activation energy of the system 

decreases rapidly, while the index n of the degree of grain growth is characterized by a gradual increase in value 

at small times up to 0.4 and an increase in the transient period. 

Conclusion. Numerical investigations performed on models with regular and irregular grids demonstrate 

many universal properties and relations typical for grain growth in polycrystaUine materials. Here the choice of the 

initial discrete grid exerts a considerable influence, as calculations showed, on the behavior of the model and opens 

possibilites for more adequate matching of the grid structure with the structure of a real polycrystal. 
The work was carried out with financial support from the Russian Fund for Fundamental Research, grants 

Nos. 95-01-00293, 95-01-02941. 

N O T A T I O N  

N, number of cells in the grid; H, Hamiltonian of the system; J, energy of interaction of neighboring cells 

per unit area; 5ij, Kronecker symbol; P, probability of a change in orientation; To critical temperature; R, grain 

size; n, index of the degree of grain growth; A, preexponential factor; .fs, fro, distribution functions over areas and 

topological classes; S, grain area; m, topological class of a grain. MI quantities are dimensionless. 
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